Ancestral graph Markov models

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ancestral Graph Markov Models 963

This paper introduces a class of graphical independence models that is closed under marginalization and conditioning but that contains all DAG independence models. This class of graphs, called maximal ancestral graphs, has two attractive features: there is at most one edge between each pair of vertices; every missing edge corresponds to an independence relation. These features lead to a simple ...

متن کامل

Estimating Causal Effects with Ancestral Graph Markov Models

We present an algorithm for estimating bounds on causal effects from observational data which combines graphical model search with simple linear regression. We assume that the underlying system can be represented by a linear structural equation model with no feedback, and we allow for the possibility of latent variables. Under assumptions standard in the causal search literature, we use conditi...

متن کامل

Iterative Conditional Fitting for Gaussian Ancestral Graph Models

Ancestral graph models, introduced by Richardson and Spirtes (2002), generalize both Markov random fields and Bayesian networks to a class of graphs with a global Markov property that is closed under conditioning and marginalization. By design, ancestral graphs encode precisely the conditional independence structures that can arise from Bayesian networks with selection and unobserved (hidden/la...

متن کامل

Markov Bases of Binary Graph Models

This paper is concerned with the topological invariant of a graph given by the maximum degree of a Markov basis element for the corresponding graph model for binary contingency tables. We describe a degree four Markov basis for the model when the underlying graph is a cycle and generalize this result to the complete bipartite graph K2,n. We also give a combinatorial classification of degree two...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Statistics

سال: 2002

ISSN: 0090-5364

DOI: 10.1214/aos/1031689015